Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges

Acaban de publicarnos un artículo en la revista del JCR (Q2) Sustainability que compara dos puentes postesados óptimos de sección en cajón atendiendo a su ciclo de vida. Creemos que la metodología empleada puede ser de interés para casos de estructuras de hormigón similares a las presentadas. El artículo forma parte del proyecto de investigación BRIDLIFE “Puentes pretensados de alta eficiencia social y medioambiental bajo presupuestos restrictivos“.

Os paso a continuación el resumen y el artículo propiamente dicho, pues está publicado en abierto.

 

 

Abstract:

The goal of sustainability involves a consensus among economic, environmental and social factors. Due to climate change, environmental concerns have increased in society. The construction sector is among the most active high environmental impact sectors. This paper proposes new features to consider a more detailed life-cycle assessment (LCA) of reinforced or pre-stressed concrete structures. Besides, this study carries out a comparison between two optimal post-tensioned concrete box-girder road bridges with different maintenance scenarios. ReCiPe method is used to carry out the life-cycle assessment. The midpoint approach shows a complete environmental profile with 18 impact categories. In practice, all the impact categories make their highest contribution in the manufacturing and use and maintenance stages. Afterwards, these two stages are analyzed to identify the process which makes the greatest contribution. In addition, the contribution of CO2fixation is taken into account, reducing the environmental impact in the use and maintenance and end of life stages. The endpoint approach shows more interpretable results, enabling an easier comparison between different stages and solutions. The results show the importance of considering the whole life-cycle, since a better design reduces the global environmental impact despite a higher environmental impact in the manufacturing stage.

Keywords:

sustainabilityenvironmental impactlife-cycle assessmentconstruction LCAbridge LCAReCiPe;sustainable construction

Reference:

PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.;  YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. doi:10.3390/su9101864 (link)

Descargar (PDF, 802KB)

Tatiana García Segura, primera española en conseguir el AWARD IALCCE

Es un honor haber dirigido la tesis doctoral de Tatiana García Segura “Efficient design of post-tensioned concrete box-girder road bridges based on sustainable multi-objective criteria”. Esta joven doctora ingeniera de caminos acaba de recibir el Premio Internacional al mejor investigador joven del mundo en el ámbito del análisis de estructuras e infraestructuras a lo largo de su ciclo de vida. Se trata del Junior Award IALCCE 2018, que premia al mejor investigador, con una edad menor a 42 años. Es la primera vez que un español gana este galardón, lo cual es un hito para la Escuela de Ingenieros de Caminos de Valencia y para la Universitat Politècnica de València.

Tatiana, que fue becaria FPI del proyecto de investigación HORSOST e investigadora del ICITECH,  ya ganó el primer premio Cemex en sostenibilidad por su trabajo fin de máster “Métricas para el diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo”Máster Universitario en Ingeniería del Hormigón, desarrollado dentro del . En este momento, es profesora ayudante doctor en el Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil, e investigadora en los proyectos BRIDLIFE y DIMALIFE. Un futuro muy brillante para esta joven investigadora y profesora.

En la fotografía, de izquierda a derecha, Tatiana García Segura, Dan M. Frangopol y Víctor Yepes

A continuación os dejo un listado de los artículos científicos indexados en revistas de fuerte impacto del JCR donde ha participado Tatiana hasta este momento.

Referencias:

  1. GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty.  Journal of Cleaner Production, 202:904-915. https://doi.org/10.1016/j.jclepro.2018.08.177
  2. PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. doi:10.3390/su10030685 (link)
  3. SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects.  Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140
  4. PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.;  YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. Doi:10.3390/su9101864 (link)
  5. GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  6. GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. doi:10.1007/s00158-017-1653-0
  7. YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI: 10.1016/j.acme.2017.02.006
  8. MOLINA-MORENO, F.; GARCÍA-SEGURA; MARTÍ, J.V.; YEPES, V. (2017). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134:205-216. DOI: 10.1016/j.engstruct.2016.12.042
  9. ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048. DOI: 10.1016/j.jclepro.2016.10.085
  10. PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295
  11. GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  12. MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  13. GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  14. YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. doi:10.1016/j.acme.2015.05.001
  15. YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  16. GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithmLatin American Journal of Solids and Structures,  11(7):1190 – 1205. ISSN: 1679-7817. (link)
  17. GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI 10.1007/s11367-013-0614-0 (link) (descargar versión autor)

 

 

Tesis doctoral: Evaluación multicriterio de la sostenibilidad social para el desarrollo de proyectos de infraestructuras

El pasado viernes 27 de octubre del 2017 tuvo lugar la defensa de la tesis doctoral de Leonardo A. Sierra Varela titulada “Evaluación multicriterio de la sostenibilidad social para el desarrollo de proyectos de infraestructuras”, dirigida por Eugenio Pellicer y Víctor Yepes. La tesis recibió la calificación de “Sobresaliente Cum Laude” por unanimidad, con mención internacional. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

Hoy en día existe un consenso por el cual las consideraciones económicas, ambientales y sociales en el desarrollo de los países constituyen dimensiones necesarias para alcanzar la sostenibilidad. En el ámbito de la construcción se han impulsado agendas que promueven el desarrollo sostenible considerando el ciclo de vida de los proyectos. Sin embargo, se reconoce que la limitación fundamental de la sostenibilidad es que tiende a centrarse en las consideraciones biofísicas y económicas del entorno construido; sin prestar la suficiente atención a los aspectos sociales. La no consideración temprana de los aspectos sociales afecta al desarrollo de la infraestructura en la sociedad a corto y largo plazo. Dado que los impactos sobre la sociedad son multidimensionales, una representación que evalúe los aspectos sociales también debe serlo. La valoración de los aspectos sociales y la calidad de vida superan los aspectos cuantitativos. En efecto, los resultados de una evaluación son igual de trascedentes que la legitimidad participativa de su proceso. En este sentido los métodos de toma de decisiones multicriterio constituyen una alternativa que representa de un modo óptimo la evaluación multidimensional y participativa de los aspectos sociales. Con todo, la sostenibilidad social en la evaluación de infraestructuras no ha sido adecuadamente tratada hasta este momento.

A la vista de estos antecedentes, la dimensión social en la evaluación de las infraestructuras requiere una revisión y nuevos enfoques en la toma de decisión en las fases tempranas del desarrollo del proyecto. Todo ello conduce a plantear el objetivo general de la investigación de la siguiente forma: Evaluar la sostenibilidad social de las infraestructuras integrándola en la toma de decisiones. Este objetivo general se desglosa en diferentes objetivos específicos que buscan explorar las áreas de mejora en el tratamiento de la sostenibilidad social. A partir de este punto, se proponen metodologías para estimar la contribución a la sostenibilidad social a través de la evaluación multicriterio de infraestructuras.

El alcance de la investigación se concentra en la evaluación de infraestructuras de ingeniería civil en las etapas de formulación, factibilidad y planificación; y la consideración de múltiples aspectos sociales. El documento presentado se compone por seis artículos complementarios (tres de ellos ya publicados y otros tres en proceso de revisión en revistas científicas). En general para el desarrollo de los objetivos de la investigación los estudios utilizan diferentes técnicas: panel de expertos Delphi, el Proceso Analítico Jerárquico (AHP), la teoría de la utilidad, sistemas estocásticos, métodos multiobjetivo y las técnicas de razonamiento Bayesiano.

La investigación se ha aplicado a distintos contextos internacionales. La contextualización de los criterios sociales en el ciclo de vida se implementó en infraestructuras chilenas. Se aplicó un método de aprendizaje activo de la  sostenibilidad en un curso de posgrado en España con estudiantes internacionales. Por su parte, se implementaron dos métodos de estimación de la contribución social, a corto y largo plazo, en infraestructuras viarias en El Salvador.

A partir de los resultados de la investigación se han propuesto métodos para tratar la dimensión social en la evaluación multicriterio de infraestructuras civiles e integrarla en el proceso de toma de decisión. Las propuestas han surgido a partir de una exploración de las necesidades de mejora de los métodos multicriterio para evaluar la sostenibilidad social. De esta forma se proponen tratamientos integrados para fortalecer la dimensión social en el proceso de evaluación de la sostenibilidad. Específicamente se proponen sistemas de participación multidisciplinar y multisectorial integrados; se considera la contribución no compensatoria de las infraestructuras a la mejora social a corto y largo plazo; se promueve la equidad intergeneracional de las oportunidades de mejora social; se trata la incertidumbre interna de los métodos propuestos; y, finalmente, se mejora la interacción con el contexto y la promoción del aprendizaje social en los procesos de evaluación. Esta investigación aporta las herramientas que respaldan a los organismos públicos encargados de la planificación territorial y de la priorización de infraestructuras para apoyar los procesos de toma de decisión.

Los resultados de los métodos propuestos presentan las siguientes limitaciones: el desempeño se ajusta al conjunto de alternativas de infraestructuras evaluadas; considera el impacto de primer orden de la infraestructura sobre los criterios sociales; y la independencia de los indicadores que interactúan sobre un mismo criterio. Las futuras investigaciones podrían simplificar los tratamientos propuestos a través de la adaptación a contextos y tipos específicos de infraestructuras, integrados con la evaluación de las dimensiones económicas y ambientales de la sostenibilidad.


Referencias:

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003 (link)

SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects.Environmental Impact Assessment Review, 65:41-53. DOI: 10.1016/j.eiar.2017.02.004

SIERRA, L.A.; PELLICER, E.; YEPES, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure.Journal of Construction Engineering and Management ASCE, 142(5):  05015020. DOI: 10.1061/(ASCE)CO.1943-7862.0001099.

PELLICER, E.; SIERRA, L.A.; YEPES, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113:884-896. DOI:10.1016/j.jclepro.2015.11.010

Algunas conclusiones obtenidas del proyecto BRIDLIFE sobre puentes postesados en cajón

A punto de terminar el proyecto de investigación BRIDLIFE, a continuación se exponen algunas conclusiones de interés fruto de dicho proyecto y de la tesis doctoral y publicaciones de la profesora Tatiana García Segura. Son pequeñas “píldoras” de conocimiento que pueden ser de interés para proyectistas e investigadores relacionados con los puentes, el hormigón, la sostenibilidad y la optimización. Son las siguientes:

  1. A pesar de la reducción de durabilidad por carbonatación y la menor captura de CO2, los cementos con adiciones resultan beneficiosos desde el punto de vista ambiental [1].
  2. Mientras el uso del hormigón reciclado como árido afecta a las propiedades del hormigón y requiere en muchos casos un incremento en el contenido de cemento, la reutilización del hormigón como material granular de relleno permite una completa carbonatación del hormigón que reduce las emisiones de CO2 [1].
  3. Se puede mejorar la seguridad estructural de los puentes en cajón con un pequeño incremento de coste siempre que se escojan las variables adecuadas [2]. Este incremento de coste no es constante para todos los niveles de seguridad. Se pueden establecer diferentes puntos, a partir de los cuales resulta más caro mejorar la seguridad estructural [2].
  4. No se aconseja aumentar el espesor de la losa superior para mejorar la seguridad de los puentes en cajón, ya que ello conlleva un aumento de peso innecesario [2]. Sin embargo, el espesor de las alas en el arranque es un aspecto clave para mejorar la flexión transversal [2].
  5. A pesar de que se ha considerado la inclinación del alma como variable de optimización, su valor óptimo apenas difiere para distintos valores de seguridad.  Esto se debe a que tanto el canto como el ancho de inclinación del alma aumentan en paralelo para mejorar la seguridad estructural [2].
  6. El uso de hormigón de alta resistencia en puentes no muestra ventajas económicas a corto plazo, pues las restricciones de servicio y armadura mínima no permiten reducir el canto y la cantidad de armadura [2]. Sin embargo, el hormigón de alta resistencia retrasa el inicio de la corrosión [3] y mejora el rendimiento estructural una vez se ha iniciado la corrosión [4]. Si se diseñan estructuras con hormigones de alta resistencia se consiguen mejores resultados durante el ciclo de vida que con diseños que tienen mayores recubrimientos, a pesar de tener el mismo inicio de corrosión [4].
  7. Los diseños que tienen una mayor durabilidad tienen un mayor coste inicial pero un menor coste de ciclo de vida [4].
  8. Los resultados muestran que tanto la optimización del coste como de las emisiones de CO2 reducen el consumo de material. Por tanto, la optimización del coste es una buena estrategia para conseguir estructuras más ecológicas [2,5,6].
  9. Para gestionar el mantenimiento de las estructuras de forma sostenible se debe tener en cuenta tanto el coste y las emisiones de reparación, como el impacto que produce el desvío de tráfico sobre los usuarios de la vía [4].
  10. La optimización del mantenimiento indica que no se debe optimizar cada superficie por separado, sino que se debe coordinar el mantenimiento de todas las superficies para reducir el coste y las emisiones que ocasiona el desvío del tráfico [4].

Referencias:

[1]          T. García-Segura, V. Yepes, J. Alcalá, Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability, Int. J. Life Cycle Assess. 19 (2014) 3–12. doi:10.1007/s11367-013-0614-0.

[2]         T. García-Segura, V. Yepes, Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety, Eng. Struct. 125 (2016) 325–336. doi:10.1016/j.engstruct.2016.07.012.

[3]         T. García-Segura, V. Yepes, D.M. Frangopol, Multi-objective design of post-tensioned concrete road bridges using artificial neural networks, Struct. Multidiscip. Optim. 56 (2017) 139–150. doi:10.1007/s00158-017-1653-0.

[4]         T. García-Segura, V. Yepes, D.M. Frangopol, D.Y. Yang, Lifetime reliability-based optimization of post-tensioned box-girder bridges, Eng. Struct. 145 (2017) 381–391. doi:10.1016/j.engstruct.2017.05.013.

[5]         T. García-Segura, V. Yepes, J. Alcalá, E. Pérez-López, Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges, Eng. Struct. 92 (2015) 112–122. doi:10.1016/j.engstruct.2015.03.015.

[6]         J.V. Martí, T. García-Segura, V. Yepes, Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy, J. Clean. Prod. 120 (2016) 231–240. doi:10.1016/j.jclepro.2016.02.024.

Environmental impact shares of a reinforced concrete earth-retaining wall with buttresses

http://blog.360gradosenconcreto.com/tipos-muros-contencion-prefabricados-concreto/

Abstract: Structural engineers focus on the reduction of carbon emissions in reinforced concrete structures, while other impacts affecting ecosystems and human health become secondary or are left behind. The featured life cycle assessment shows the impacts corresponding to each construction stage of an earth-retaining wall with buttresses. In this study the contribution ratio of each input flow is analyzed. Accordingly, concrete, landfill, machinery, formwork, steel, and transport are considered. Results show that despite the concrete almost always accounts for the largest contribution to each impact, the impact shares of steel present noticeable sensitivity to the steel-manufacturing route. The parameter of study is the recycling rate, usually 75% reached in Spain. Noticeable variation is found when the recycling content increases. The relationship between the impacts of each material with the amount of material used discloses research interest.

 

Keywords: Life cycle assessment, Functional unit, Steel recycling rate, Concrete ratio, Photochemical oxidation, Ozone depletion, Global warming.

Reference:

MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V.; CIROTH, A. (2017). Environmental impact shares of a reinforced concrete earth-retaining wall with buttresses. The Ninth International Structural Engineering and Construction Conference, Resilient Structures and Sustainable Construction ISEC-9, Valencia, Spain July 24-July 29.

Descargar (PDF, 356KB)

 

Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs

Nos acaban de publicar en la revista de Elsevier del primer decil, Journal of Cleaner Production, un artículo donde se estudia el diseño de los muros de contrafuertes optimizados para reducir sus emisiones de CO2. Este artículo forma parte de nuestra línea de investigación BRIDLIFE en la que se pretenden optimizar estructuras atendiendo no sólo a su coste, sino al impacto ambiental que generan a lo largo de su ciclo de vida. El artículo lo podéis descargar GRATUITAMENTE hasta el 27 de agosto de 2017 en el siguiente enlace:

https://authors.elsevier.com/a/1VLOP3QCo9NDzg

Abstract:

This paper shows the differences between the design of a reinforced concrete structure considering two objectives to minimize; economic cost and CO2 emissions. Both objectives depend on the amount of two high carbon intensive materials: cement in the concrete and steel; therefore, these objectives are related. As the balance between steel and cement per m3 of concrete depends on several factors such as the type of structure, this study focuses on buttressed earth-retaining walls. Another factor that determines the balance between steel and concrete is the height of the wall. Thus, the methodology considers a parametric study for optimal designs of buttressed earth-retaining walls, where one of the parameters is the wall height. One of the objectives is to show the variation in cost when CO2 is minimized, respectful of minimizing the economic cost. The findings show that wall elements under bending-compressive strains (i.e. the stem of the buttressed retaining wall) perform differently depending on the target function. On one hand, the study reveals an upward trend of steel per unit volume of concrete in emission-optimized earth-retaining buttressed walls, compared to the cost-optimized. On the other hand, it is checked that unlike the cost-optimized walls, emission-optimized walls opt for a higher concrete class than the minimum class available. These findings indicate that emission-optimized walls penalize not only concrete volume, but also the cement content, to the extent that a higher concrete class outperforms in reduced emissions. Additionally, the paper outlines how and to what extent the design of this typology varies for the two analyzed objectives in terms of geometry and amount of materials. Some relevant differences influencing the geometry of design strategies are found.

Keywords:

Cargon emission; CO2; earth-retaining wall; reinforced concrete; Harmony search; Threshold accepting

Reference:

MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884.

Multi-objective design of post-tensioned concrete road bridges using artificial neural networks

Nos acaban de publicar en línea en la revista Structural and Multidisciplinary Optimization (revista indexada en JCR en el primer cuartil) un trabajo de investigación en el que utilizamos las redes neuronales artificiales junto para el diseño multiobjetivo de puentes postesados de carreteras. Os paso a continuación el resumen y el enlace al artículo por si os resulta de interés. El enlace del artículo es el siguiente: http://link.springer.com/article/10.1007%2Fs00158-017-1653-0

Referencia:

García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, doi:10.1007/s00158-017-1653-0

Abstract:

In order to minimize the total expected cost, bridges have to be designed for safety and durability. This paper considers the cost, the safety, and the corrosion initiation time to design post-tensioned concrete box-girder road bridges. The deck is modeled by finite elements based on problem variables such as the cross-section geometry, the concrete grade, and the reinforcing and post-tensioning steel. An integrated multi-objective harmony search with artificial neural networks (ANNs) is proposed to reduce the high computing time required for the finite-element analysis and the increment in conflicting objectives. ANNs are trained through the results of previous bridge performance evaluations. Then, ANNs are used to evaluate the constraints and provide a direction towards the Pareto front. Finally, exact methods actualize and improve the Pareto set. The results show that the harmony search parameters should be progressively changed in a diversification-intensification strategy. This methodology provides trade-off solutions that are the cheapest ones for the safety and durability levels considered. Therefore, it is possible to choose an alternative that can be easily adjusted to each need.

Keywords:

Multi-objective harmony search; Artificial neural networks; Post-tensioned concrete bridges; Durability; Safety.

Method for estimating the social sustainability of infrastructure projects

Niigata soil liquefaction. Wikipedia

La evaluación de la sostenibilidad social de los proyectos no es un tema sencillo ni inmediato. Si bien los impactos medioambientales se han estudiado en el ámbito científico con cierta profundidad, los impactos sociales de las infraestructuras se han investigado mucho menos. Es más, en numerosas ocasiones dichos impactos se han minusvalorado. Pues bien, nos acaban de publicar un artículo en la revista Environmental Impact Assessment Review (revista indexada en el JCR, primer cuartil de impacto) en el cual proponemos una metodología que permite afrontar este reto.

Elsevier permite descargar de forma gratuita este artículo hasta el 14 de junio de 2017 accediendo al siguiente enlace: https://authors.elsevier.com/a/1UxW7iZ5spJDe

Referencia:

SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53. https://doi.org/10.1016/j.eiar.2017.02.004

Highlights:

  • Method to select suitable infrastructure projects from the social sustainability point of view
  • Emphasizes social interactions of the infrastructure in the short and long term
  • Distinguishes the social sustainability of infrastructure projects in different locations
  • Efficiency of a social contribution in terms of early social benefits and a long-term distribution
  • Supports early decision-making of public agencies regarding infrastructure projects

 

Abstract:

Nowadays, sustainability assessments tend to focus on the biophysical and economic considerations of the built environment. Social facets are generally underestimated when investment in infrastructure projects is appraised. This paper proposes a method to estimate the contribution of infrastructure projects to social sustainability. This method takes into account the interactions of an infrastructure with its environment in terms of the potential for short and long-term social improvement. The method is structured in five stages: (1) social improvement criteria and goals to be taken into account are identified and weighed; (2) an exploratory study is conducted to determine transfer functions; (3) each criterion is homogenized through value functions; (4) the short and long-term social improvement indices are established; and finally, (5) social improvement indices are contrasted to identify the socially selected alternatives and to assign an order of priority. The method was implemented in six alternatives for road infrastructure improvement. The results of the analysis show that the method can distinguish the contribution to social sustainability of different infrastructure projects and location contexts, according to early benefits and potential long-term equitable improvement. This method can be applied prior to the implementation of a project and can complement environmental and economic sustainability assessments.

Keywords:

  • Social contribution;
  • Social improvement;
  • Infrastructure;
  • Method;
  • Social sustainability

 

 

Special Issue “Sustainable Construction”

High visibility: indexed by the Science Citation Index Expanded, the Social Sciences Citation Index (Web of Science) and other databases. Impact Factor: 1.343 (2015)

Special Issue “Sustainable Construction”

A special issue of Sustainability (ISSN 2071-1050). This special issue belongs to the section “Sustainable Engineering and Science“.

Deadline for manuscript submissions: 30 November 2017

Special Issue Editors

Guest Editor

Prof. Dr. Víctor Yepes
Concrete Science and Technology Institute (ICITECH), Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València Valencia, Spain
Interests: multi-objective optimization; life-cycle assessment; decision-making; sustainability; concrete structures; CO2 emissions; construction management

Guest Editor

Dr. Tatiana García-Segura
Concrete Science and Technology Institute (ICITECH), Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València Valencia, Spain
Interests: multi-objective optimization; durability; safety; sustainability; post-tensioned bridges; maintenance; blended cement; recycled concrete

Special Issue Information

Dear Colleagues,

This “Sustainable Construction” Special Issue comprises selected papers for Sustainability. Construction is one of the main sectors generating greenhouse gases. This industry consumes large amounts of raw materials, such as stone, timber, water, etc. Additionally, infrastructure should provide service over many years without safety problems. Therefore, their correct design, construction, maintenance and dismantling are essential to reduce economic, environmental and societal consequences. That is why promoting sustainable construction is becoming extremely important nowadays. This Special Issue is seeking papers that explore new ways of reducing the environmental impacts caused by the construction sector, as well promoting social progress and economic growth. These objectives include, but are not limited to:

  • The use of sustainable materials in construction
  • The development of technologies and processes intended to improve sustainability in construction
  • The optimization of designs based on sustainable indicators
  • The reduction of the economic, environmental and social impact caused by production processes
  • The promotion of durable materials that reduce the future maintenance
  • The life-cycle assessment
  • Decision-making processes that integrate economic, social, and environmental aspects

Papers selected for this Special Issue are subject to a rigorous peer-review procedure with the aim of rapid and wide dissemination of research results, developments and applications.

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed Open Access monthly journal published by MDPI.

Keywords

  • sustainable materials
  • life-cycle assessment
  • sustainable and efficient technologies and processes
  • design optimization
  • durable materials
  • maintenance minimization
  • decision-making